首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10151篇
  免费   619篇
  国内免费   595篇
  2023年   103篇
  2022年   142篇
  2021年   199篇
  2020年   219篇
  2019年   262篇
  2018年   237篇
  2017年   228篇
  2016年   254篇
  2015年   283篇
  2014年   442篇
  2013年   476篇
  2012年   379篇
  2011年   468篇
  2010年   347篇
  2009年   496篇
  2008年   531篇
  2007年   579篇
  2006年   545篇
  2005年   462篇
  2004年   451篇
  2003年   377篇
  2002年   317篇
  2001年   284篇
  2000年   253篇
  1999年   267篇
  1998年   261篇
  1997年   201篇
  1996年   225篇
  1995年   215篇
  1994年   194篇
  1993年   198篇
  1992年   175篇
  1991年   166篇
  1990年   133篇
  1989年   161篇
  1988年   115篇
  1987年   134篇
  1986年   102篇
  1985年   106篇
  1984年   73篇
  1983年   45篇
  1982年   47篇
  1981年   53篇
  1980年   44篇
  1979年   34篇
  1978年   17篇
  1977年   14篇
  1976年   15篇
  1975年   5篇
  1972年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
After significant injury, the liver must maintain homeostasis during the regenerative process. We hypothesized the existence of mechanisms to limit hepatocyte proliferation after injury to maintain metabolic and synthetic function. A screen for candidates revealed suppressor of cytokine signaling 2 (SOCS2), an inhibitor of growth hormone (GH) signaling, was strongly induced after partial hepatectomy. Using genetic deletion and administration of various factors we investigated the role of SOCS2 during liver regeneration. SOCS2 preserves liver function by restraining the first round of hepatocyte proliferation after partial hepatectomy by preventing increases in growth hormone receptor (GHR) via ubiquitination, suppressing GH pathway activity. At later times, SOCS2 enhances hepatocyte proliferation by modulating a decrease in serum insulin-like growth factor 1 (IGF-1) that allows GH release from the pituitary. SOCS2, therefore, plays a dual role in modulating the rate of hepatocyte proliferation. In particular, this is the first demonstration of an endogenous mechanism to limit hepatocyte proliferation after injury.  相似文献   
2.
This paper reviews the various factors, coefficients and indexes developed to evaluate terrestrial plant performance in respect to phytoremediation.A brief list of indexes includes the Accumulation factor, Bioabsorption coefficient, Bioaccumulation coefficient, Bioaccumulation factor, Bioconcentration, Bioconcentration coefficient, Bioconcentration factor, Biological absorption coefficient, Biological accumulation coefficient, Biological concentration factor, Biological transfer coefficient, Concentration factor, Enrichment coefficient, Enrichment factor, Extraction coefficient, Index of bioaccumulation, Mobility index, Shoot accumulation factor, Soil host transfer factor, Soil-plant transfer coefficient, Soil-plant transfer factor, Transfer factor and Translocation factor.These indexes represent the result of a ratio calculation between element concentrations in plant parts to that of substrata. In other cases indexes arise from the ratio calculation of element concentrations in two distinct plant parts.In the literature different terms have been attributed to the same ratio and this often represents an overlap in terminology. On the other hand the same term corresponds to several different ratios and this could create confusion and misinterpretation in data comparison.Furthermore, the evaluation of hyperaccumulation, phytostabilization or phytoextraction of plant species is not always performed in the same way. Different plant parts are considered as well as different extraction procedures for both plant and substrata element assessment. As a consequence, a direct comparison between obtained data is not always reliable and possible.In this paper the various available indexes are reviewed, highlighting both the similarity and differences between them with the aim of helping the community in choosing the appropriate term for both data evaluation and comparison. In this author’s opinion there is no need of new terms to define indexes. I would stress the need for conformity to the original definitions and criteria.  相似文献   
3.
L. G. Firbank 《Oecologia》1993,94(3):351-355
The changing populations of weeds during 13 years of the Broadbalk continuous wheat experiment were analysed to investigate the extent of differences in shortterm variability of cover between species. The data were from two sections of the experiment where winter wheat was grown continuously under herbicide treatment for 13 and 6 years respectively. Logistic regressions were fitted to the data. Equisetum arvense showed significant long-term increases on both sections; long-term trends were also detected in the longer data run for Agrostis stolonifera, Cirsium arvensa, Poa trivialis, Ranunculus arvensis and Vicia sativa, and for Medicago lupulina on the shorter data run. Variation around long-term trends was low in the case of Equisetum, and, in the longer data run, for Cirsium and Tussilago farfara, and high for Poa spp. and Vicia. Cover values on the two sections were positively correlated for Alopecurus myosuroides, Equisetum, Poa annua and Tripleurospermum inodorum. There was a weak correlation between C-S-R strategy and short-term variability; the more competitive species displayed less variability than the ruderal species. Furthermore, species regenerating from persistent seed banks were more variable in the short term than those regenerating from short-lived seed or bud banks. This can be explained by differences in response to year-to-year variation in environmental conditions, those species with persistent seed banks being typically more sensitive to annual fluctuations in the environment than those without.  相似文献   
4.
Rhizobial symbiosis is known to increase the nitrogen availability in the rhizosphere of legumes. Therefore, it has been hypothesized that other plants’ roots should forage towards legume neighbours, but avoid non-legume neighbours. Yet, root distribution responding to legume plants as opposed to non-legumes has not yet been rigorously tested and might well be subject to integration of multiple environmental cues.In this study, wedevised an outdoor mesocosm experiment to examine root distributions of the two plant species Pilosella officinarum and Arenaria serpyllifolia in a two-factorial design. While one factor was ‘neighbour identity’, where plants were exposed to different legume or non-legume neighbours, the other factor was ‘nitrogen supply’. In the latter the nutrient-poor soil was supplemented with either nitrogen-free or with nitrogen-containing fertilizer.Unexpectedly, of all treatments that included a legume neighbour (eight different species or factor combinations), we found merely one case of root aggregation towards a legume neighbour (P. officinarum towards Medicago minima under nitrogen-fertilized conditions). In this very treatment, also P. officinarum root–shoot allocation was strongly increased, indicating that neighbour recognition is coupled with a contesting strategy.Considering the various response modes of the tested species towards the different legume and non-legume neighbours, we can conclude that roots integrate information on neighbour identity and resource availability in a complex manner. Especially the integration of neighbour identity in root decisions must be a vital aptitude for plants to cope with their complex biotic and abiotic environment in the field.  相似文献   
5.
Mechanisms that coordinate growth during development are essential for producing animals with proper organ proportion. Here we describe a pathway through which tissues communicate to coordinate growth. During Drosophila melanogaster larval development, damage to imaginal discs activates a regeneration checkpoint through expression of Dilp8. This both produces a delay in developmental timing and slows the growth of undamaged tissues, coordinating regeneration of the damaged tissue with developmental progression and overall growth. Here we demonstrate that Dilp8-dependent growth coordination between regenerating and undamaged tissues, but not developmental delay, requires the activity of nitric oxide synthase (NOS) in the prothoracic gland. NOS limits the growth of undamaged tissues by reducing ecdysone biosynthesis, a requirement for imaginal disc growth during both the regenerative checkpoint and normal development. Therefore, NOS activity in the prothoracic gland coordinates tissue growth through regulation of endocrine signals.  相似文献   
6.
Recent debate on whether or not mahogany ( Swietenia macrophylla King) is threatened by the international timber trade has focused on the breadth of its range and estimates of the remaining stock of mahogany trees. These data are inadequate to reveal the status of mahogany populations, both because they are incomplete in areal extent and because they do not reveal population parameters such as the existence or density of young trees smaller than commercial size. However, there is sufficient information on the regeneration ecology of mahogany to indicate that under natural conditions this species regenerates in essentially even-aged stands after catastrophic disturbances destroy many or most trees, and, in the case of fires and flooding, saplings and seedlings as well. Adult mahoganies tend to survive these events, and regenerate by shedding seed onto the resulting gaps or clearings. This ecological strategy makes mahogany vulnerable to logging, first because juvenile mahoganies are not found in the understorey, and secondly because logging operations shortcircuit mahogany regeneration processes by selectively removing almost all mahogany seed sources while leaving standing competing vegetation of other species. Listing of mahogany in CITES Appendix II could provide both a mechanism to fill in gaps in information and an incentive to change current practices in favour of silvicultural management to provide for regeneration of this valuable timber species in forests subjected to logging.  相似文献   
7.
The main goal of the study was to determine the structure of endophytic bacteria inhabiting different parts (endosperm, germ, roots, coleoptiles, and leaves) of two wheat species, Triticum aestivum L. (cv. ‘Hondia’) and Triticum spelta L. (cv. ‘Rokosz’), in order to provide new knowledge about the stability and/or changeability of the core microbiome in different plant organs. The endophytic core microbiome is associated with plants throughout their whole life cycle; however, plant organs can determine the actual endophytic community. Therefore, next generation sequencing with MiSeq Illumina technology was applied to identify the endophytic microbiome of T. aestivum and T. spelta. Bioinformatic analyses were performed with the use of the DADA2(1.8) package and R software (3.5.1).It was demonstrated that wheat, which is an important crop plant, was associated with beneficial endophytic bacteria inside the endosperms, germs, roots, leaves, and coleoptiles. Importantly, for the first time, biodiversity was recognized in the coleoptiles of the investigated wheat species. Flavobacterium, Pseudomonas and Janthinobacterium were shown to be common genera for both tested wheat cultivars. Among them, Pseudomonas was found to be the only endophytic genus accompanying both wheat species from the endosperm stage to the development of the leaf. Paenibacillus was recognized as a core genus for the ‘Hondia’ cv., whereas Pedobacter and Duganella constituted the core microbiome in the ‘Rokosz’ cv. In addition, the first insight into the unique and yet unrecognized endophytic microbiome of T. spelta is presented.  相似文献   
8.
9.
We reported the Australian golden wattle as a copper stabilizer in abandoned copper mine soils earlier. Here we investigate to confirm this plant’s suitability to grow on metal contaminated mine soils based on stress indication. The seeds of Acacia pycnantha collected from mining area were germinated after heat and no heat treatment on two types of irrigation. The daily irrigated and heat treated seeds gave up to 85% germination on sandy soil. The A. pycnantha was grown under greenhouse condition in six different soils collected from abandoned copper mine at Kapunda in South Australia. Among the six soil samples, soil-1 with the highest copper concentration produced 2.05 mmol g−1 tissue of proline. Proline expression was prominent in more saline soils (1, 5 and 6) having electrical conductivity (EC) 1184, 1364 and 1256 μS, respectively. Chlorophyll a, b and carotenoid levels in plants showed a gradually decreasing trend in all the soils as experiment progressed. The plants grown on soil sample-1, containing 4083 ± 103 mg kg−1 of copper resulted in 18 ± 2 mg kg−1 accumulation in its leaf. The calcium accumulation was significant up to 11648 ± 1209 mg kg−1 in leaf. Although pore water samples showed higher Cu concentration in soils, an increased mobility of arsenic and lead was observed in all the soil samples. Our experiment points out the need for proper monitoring of revegetation processes to avoid revegetation and reclamation failure.  相似文献   
10.
Biomass production and plant species diversity in grassland in southern England was monitored before and after a change from conventional to organic farming. Our 18-year study, part of the UK's Environmental Change Network long-term monitoring programme, showed that the cessation of artificial fertiliser use on grassland after conversion to organic farming resulted in a decrease in biomass production and an increase in plant species richness. Grassland productivity decreased immediately after fertiliser application ceased, and after two years the annual total biomass production had fallen by over 50%. In the subsequent decade, total annual grassland productivity did not change significantly, and yields reached 31–66% of the levels recorded pre-management change. Plant species richness that had remained stable during the first 5 years of our study under conventional farming, increased by 300% over the following 13 years under organic farm management. We suggest that the change in productivity is due to the altered composition of species within the plots. In the first few years after the change in farming practice, high yielding, nitrogen-loving plants were outcompeted by lower yielding grasses and forbs, and these species remained in the plots in the following years. This study shows that grassland can be converted from an environment lacking in plant species diversity to a relatively species-rich pasture within 10–15 years, simply by stopping or suspending nitrogen additions. We demonstrate that the trade-off for increasing species richness is a decrease in productivity. Grassland in the UK is often not only managed from a conservation perspective, but to also produce a profitable yield. By considering the species composition and encouraging specific beneficial species such as legumes, it may be possible to improve biomass productivity and reduce the trade-off.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号